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1. INTRODUCTION

1.1 Motivation

The idea of modern cryptography is to identify cryptographic problems that
need to be solved and to provide a rigorous treatment for them. An essential
problem in distributed computing (e.g., scientific and conferencing applications
and grid applications [Berman et al. 2003; Foster and Kesselman 2004]) is the
ability to establish a security context within which messages sent over the wire
are encrypted and authenticated. A cryptographic means to do that is to have
the distributed system’s components exchange a secret value and to use this
value to compute the keying material for a symmetric cipher and a message
authentication code [Bellare et al. 1996; Menezes et al. 1997]. The keying mate-
rial is set as the output of a key-derivation function that maps the secret value
to the (bit-string) keys of the symmetric algorithms. All being considered, the
critical step in the establishment of this security context clearly remains the
mechanism for exchanging the secret value. This step is often carried via a DH
key exchange [Diffie and Hellman 1976] or, in the group scenario, through its
possible generalizations (see, e.g., [Steiner et al. 1996; Ingemarsson et al. 1982;
Steer et al. 1988; Burmester and Desmedt 1994]).

The Diffie–Hellman (DH) key exchange, as well as some generalizations,
were initially designed to protect against a passive adversary that only eaves-
drops on messages. However, when it comes to implement these schemes in
a distributed system’s security architecture, a much stronger adversary must
be taken into account. Hackers have a great deal of control over our Internet
communications. They can relay, schedule, inject, and alter our messages, or
even try to impersonate us via man-in-the-middle attacks. One way to prevent
these active attacks is to add authentication services to the group key-exchange
protocol. In spite of the apparent simplicity of adding authentication services to
a group key exchange, it is a task fraught with many complications. Many au-
thenticated key-exchange protocols were later found to be flawed and, in some
cases, the flaws even took years before being discovered (see, for instance [Bird
et al. 1991; Diffie et al. 1992; Menezes et al. 1997; Pereira and Quisquater 2001]
and the discussion in Section 1.3 below). One way to avoid many of the flaws is
to provide a formal treatment in the framework of modern cryptography.

Active attacks are even easier to mount and more destructive, as middleware
technologies enable the exchange of data among a large number of components
that form a multicast group [Amir and Stanton 1998; Birman 1999; Berket
et al. 2002; von Renesse et al. 1998]. These technologies provide asynchronous

ACM Transactions on Information and System Security, Vol. 10, No. 3, Article 10, Publication date: July 2007.



Provably Secure Authenticated Group Diffie–Hellman Key Exchange • 3

and reliable communication channels to coordinate the distributed application’s
components spread on the Internet. Each component shares responsibility for
parts of a task and coordinates its efforts with the other components. In this
environment, prone to faults (e.g., faults can result from host failures, network
failures, network congestion, CPU load, or malice) creating a security context—
within which messages are protected—is challenging as application’s compo-
nents join and leave the multicast group [Agarwal et al. 2001; Amir et al. 2004;
Rodeh et al. 2001]. Accommodating this dynamic membership means updating
the secret value after each change in the membership of the multicast group.
This step is often carried via a dynamic group DH key exchange Bresson et al.
2001a, 2002a; Steiner et al. 2000].

1.2 Contribution

The first contribution of the paper is to provide cryptographic experts with a
provable security framework to assess the security of authenticated group key-
exchange protocols. The framework captures the adversary’s capabilities and
defines the security requirements to satisfy. It is the result of three successive
papers. In the first one [Bresson et al. 2001b], we have captured the characteris-
tics of an authenticated key exchange, which allows a pool of participants, com-
municating over a public network and each holding a pair of public/private keys,
to agree on a session key—these participants do not share any secrets before
hand. In real life, however, the membership of the group is not built once and for
all, but is built incrementally as the network topology evolves [Agarwal et al.
2001; Amir et al. 2004; Rodeh et al. 2001]. Participants can, indeed, join/leave
the pool at any time or the pool itself can be split into disjoint components due
to network faults or malice. Thus, in the second paper [Bresson et al. 2001a], we
have equipped our framework with this notion of dynamicity in membership.
This is done by enhancing the framework with additional, atomic1 operations,
which enable the group to grow or decrease: an authenticated dynamic group
key exchange allows an existing pool of participants to update the value of
their session key after each change in the membership so that this value is
only known to the members of the newly formed pool. We note that rerunning
the protocol from scratch is always possible and, hence, the goal of such oper-
ations is to provide an efficient means to update the existing session key into
a new one. Finally, in Bresson et al. [2002a], we have captured the ability to
initiate parallel executions of a dynamic group key exchange; concurrency is an
important feature to consider when a key exchange is meant for practical use.
An authenticated group key exchange provides a set of participants with an in-
teractive protocol to exchange a session key and, therefore, form a secure group.
In real life, however, the participants may be part of several pools at the same

1We do not deal with the cases where participants decide to halt during an execution of the protocol

itself. Our Join and Remove operations are simply formal tools to describe evolutions of a group,

step by step, by one or several members at once, and assuming each of these steps is done using the

appropriate algorithm. Premature halting during execution of such an algorithm is not considered

here (more precisely, it is not considered further than what the adversary can basically do: block

messages and turn into infinite time out).
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time and, therefore, may need to run multiple key exchanges in parallel. Later
on, these participants may close one session while keeping the others opened.
As this, simplistic scenario shows, concurrency introduces technical difficulties
in the security analysis, since an adversary could inject data extracted from
one execution into another one to defeat the security of this later key exchange.
Concurrent executions are more realistic than sequential ones and must be in-
cluded in a provable security framework for authenticated dynamic group key
exchange.

In addition to the formal security model, the second contribution of this work
is to provide engineers with a generic authenticated group DH key-exchange
construction, which once instantiated, leads to the schemes of Bresson et al.
[2001a, 2001b, 2002a]. The construction is described in terms of modules that
perform the key-exchange and the authentication operations. The modules can
be instantiated via processes [Bresson et al. 2001a, 2001b] or hardware de-
vices [Bresson et al. 2002a] that use tamper detection to not reveal any in-
formation. Embedding the critical cryptographic material in some hardware
cryptographic devices is at least as good as erasing secrets [NIST 1994; Palmer
et al. 1998; Vedder and Weikmann 1997]; cryptographers assume and usually
do not explicitly state that secrets are definitively and reliably erased (only the
most recent secrets are kept) [Crescenzo et al. 1999; Joye and Quisquater 1997].
In our security model as described in Bresson et al. [2002a], we have captured
the adversary’s ability to gain access to the internal memory of participants
and incorporated in the framework the action of erasing a secret. The generic
authenticated group DH key-exchange construction achieves in a provably se-
cure and practical way the security requirements specified in the framework.
Provable security is reached by constructing a reduction showing that, in our
formal framework, the scheme achieves the aforementioned security require-
ments under reasonable intractability assumptions.

1.3 Related Work

1.3.1 General Issues. A comprehensive treatment of “Protocols for Authen-
tication and Key Establishment” can be found in Boyd and Mathuria’s book
[2003]. In previous papers, Boyd [1995, 1997] gave an overview of key agree-
ment issues; his work provides a high-level classification of two and multiparty
key agreement protocols, and a discussion of their security, depending on which
class of function is used to combine the nonces of each party. More bibliography
can be found in the Handbook of Applied Cryptography [Menezes et al. 1997].
It is important to distinguish two kinds of scenario: in the first one, key distri-
bution (also known as key transport), the key is chosen by a single party and
provided to the participants. In the case of key agreement (also referred as key
exchange), all users participate in determining the key value. In the present
paper, we concentrate exclusively on (group) key agreement.

1.3.2 Security Models for Group Key Agreement. In the framework of mod-
ern cryptography one finds a formal model and security definitions for the task
of exchanging a secret value—the so-called session key. Bellare and Rogaway
proposed a formal model wherein the instances of a player are modeled via
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oracles, the capabilities of the adversary are modeled via queries to these
oracles, and the secrecy of the session key is modeled via the notion of se-
mantic security [Goldwasser and Micali 1984]. This model was originally used
to analyze the security of methods for key distribution [Bellare and Rogaway
1993a]. In Bellare and Rogaway [1995], they consider a three-party scenario,
in the on-line TTP (trusted third party) setting, in which an incoercible server
is available to the parties; it has been later extended to the public-key setting
by Blake-Wilson et al. [Blake-Wilson and Menezes 1997a; Blake-Wilson et al.
1997b] and a specific adaptation was done few years ago by Bellare et al. in
the password-based key-exchange setting [Bellare et al. 2000]. Another kind of
security model is based on the multiparty simulatability technique, which was
initiated by Bellare et al. [1998]; further refinements were proposed by Canetti
and Krawczyk [2001]. They make use of the indistinguishability approach as
proposed in Bellare and Rogaway [1995] to propose the notion of secure chan-
nels; then in Canetti and Krawczyk [2002], they developed the property of uni-
versal composability (UC) of such channels. Shoup [1999] provided a technical
modification of the original work by Bellare et al. In particular, he took into
account several corruption models in order to encompass the forward secrecy
property (which states that knowing long-term keys does not help in compromis-
ing previously established session keys). Our treatment of the authenticated
group key exchange is derived from the first kind of approach [Bellare and
Rogaway 1993a; Bellare et al. 2000]. We provided the first formal security mod-
els and proven secure protocols in our series of papers [Bresson et al. 2001a,
2001b, 2002a].

1.3.3 Previous Work on Group Diffie–Hellman. There have been several
protocols aiming to generalize the DH key exchange [Diffie and Hellman 1976]
to the multiparty setting. These were tackled by Ingemarsson et al. [1982],
Diffie et al. [Steer et al. 1988], Burmester and Desmedt [1994], and Steiner
et al. [1996]. The use of “multiple-decker” exponents in the protocol of Diffie
et al. makes it difficult to reduce the security of the protocol to the standard DH
problem and, therefore, its security is heuristic. In 1996, Steiner et al. proposed
a natural extension to DH, named the group DH key exchange [Steiner et al.
1996], which, in 2001, we enhanced with authentication services and proved it
secure [Bresson et al. 2001b]. This authentication enhancement and the formal
model for its analysis are at the core of the present work. We note that the works
by Ateniese et al. [1998, 2000] also aim at adding authentication services to the
schemes by Steiner et al., however, the security proof was only informal.

Previous to the work by Steiner et al., Diffie et al. [1992] presented the STS
(station-to-station) protocol, but this protocol does not cover concurrent exe-
cutions. Also, the well-known protocol by Burmester and Desmedt [1994] is a
very elegant protocol, which interestingly achieves a constant-round complex-
ity. However, as shown by Just and Vaudenay [1996], it does not achieve key
authentication.

1.3.4 Dynamicity for Group Key Agreement. The notion of dynamicity in
the group membership was pioneered by Steer et al. [1988]. Adding members to
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the group is easy, but removing them is not. Steiner et al. [2000] modified their
original method for group DH key exchange [Steiner et al. 1996; Ateniese et al.
1998] to easily add and remove members from the group. In addition, Ateniese
et al. [1998, 2000] identified additional, useful security notions for a group key
exchange (such as perfect forward secrecy, contributory, key confirmation) and
informally show how to enhance [Steiner et al. 2000] with authentication. The
present paper describes our contribution, based on their works, in order to
achieve provable security in dynamic groups [Bresson et al. 2001a, 2002a].

Other researchers have proposed methods for dynamic group DH key ex-
change. Perrig extends the work of one-way function trees (OFT; originally in-
troduced by McGrew and Sherman [1998]) to design a tree-based key agreement
scheme for peer groups [Perrig 1999]. However, this work lacked the facilities
for handling group partitions and merges. Further refinements by Kim et al.
[2000, 2001] addressed these issues, but do not specify a rigorous security model
for a formal proof.

1.3.5 Protocols’ Complexity. The schemes we analyze in this paper are di-
rectly derived from those by Steiner et al. and, thus, have linear complexity. For
this reason, it is not reasonable to use them at a large or even medium scale.
However, we emphasize that the main contribution of this work remains the
formal model for provable security and we insist that many recently proposed
schemes for group key exchange have been analyzed using our model (see, e.g.,
Katz and Yung [2003] and Boyd and Nieto [2003]).

The round complexity of a key agreement protocol becomes critical at a large
scale. The paper by Becker and Wille [1998] also gave one single round as
an optimal lower complexity bound for multiparty key agreement. Joux used
pairings to design a one-pass three-party Diffie–Hellman key exchange [Joux
2000], but generalizing his construction with multilinear forms seems to be
difficult [Dupont and Enge 2002]. Boyd and Nieto [2003] came up with a round-
optimal protocol, however, their solution does not provide forward secrecy.

Secret-sharing techniques also give advantage to design methods for group
key exchange. Li and Pieprzyk [1999] proposed the first key-exchange method
based on secret sharing; by using polynomial secret-sharing tools, Tzeng [2000]
proposed a fault-tolerant protocol with constant-round complexity, but in which
the message complexity per user is proportional to the number of users. Later,
Cachin and Strobl [2004] provide a formal analysis of an (optimal) fault-tolerant
scheme, in the framework of asynchronous reactive systems (such as Canetti
[2000] and Pfitzmann and Waidner [2001]). On the other hand, Bresson and
Catalano [2004] designed a scheme with both message efficiency and constant-
round complexity, but without fault tolerance.

1.3.6 Using Cryptographic Hardware Protections. We note that the use of
cryptographic hardware devices for session key distribution was already ex-
plored by Rubin and Shoup [1996]. Even though a cryptographic method is
proved secure, security can sometimes be compromised when the method is in-
correctly implemented. Cryptographers assume (and usually do not explicitly
state) that secrets are definitively and reliably erased (only the most recent

ACM Transactions on Information and System Security, Vol. 10, No. 3, Article 10, Publication date: July 2007.



Provably Secure Authenticated Group Diffie–Hellman Key Exchange • 7

secrets are kept) [Crescenzo et al. 1999; Joye and Quisquater 1997]. In our
2002 paper [Bresson et al. 2002a] we incorporate the cryptographic action
of erasing a secret. This allows us to consider forward-secrecy issues: in the
strong corruption model, as defined by Bellare et al. [2000], in which the cor-
ruption of a player reveals his internal state (including “ephemeral” data),
one can prevent attacking the session key before or after the lifetime of these
data. When dealing with the weak-corruption model, in which corruption re-
veals only the long-term key, we achieve perfect forward secrecy: knowledge
of a long-live key is useless for obtaining any past session key. Our model as-
sumes these critical data are embedded in some hardware cryptographic de-
vices, which are at least as good as erasing a secret [NIST 1994; Palmer et al.
1998; Vedder and Weikmann 1997]. In other words, we offer a technological
choice: either the previously used data are tamper protected or they are securely
erasable.

1.4 Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, we introduce
the group DH assumptions and show how these assumptions relate to the DH
assumptions. In Section 3, we present our provable security framework and
abstract out the functionalities of the authenticated group DH key exchange.
In Section 4, we describe the AKE1 method for authenticated group DH key
exchange. In Section 5, we show that it is provably secure in the standard
model under the classic decisional Diffie–Hellman assumption. We finally
conclude the paper.

2. COMPUTATIONAL PROBLEMS

We first present the notion of group DH distribution and use it to define the
computational and decisional group DH assumptions. Our adversary is time
constrained, which means that all the success probabilities and advantages—
Succ(t, . . . )) and Adv(t, . . . ), respectively—represent the maximal probabilities
over all the adversaries running in time t.

2.1 The Group Diffie–Hellman Distribution

Given G = 〈g〉 a cyclic group of prime order q, n an integer, In the set {1, . . . , n},
P(In) the set of all subsets of In, and � a subset of P(In), such that In /∈ �, the
group Diffie–Hellman distribution relative to � is defined as follows (with the
convention that

∏
∅ xi = 1):

GDH� = {View�(x1, . . . , xn) | x1, . . . , xn ∈R Zq}
where View�(x1, . . . , xn) = {(

J, g
∏

j∈J x j
)

J ∈ �
}
.

When there is no risk of confusion, we will simply describe the tuple View as
a collection of group elements (rather than a collection of pairs). Since this
distribution is a function of the parameters n and �, it could be instantiated
with any of the following special forms:

� The Diffie–Hellman distribution: n = 2 and � = {{1}, {2}}.
ACM Transactions on Information and System Security, Vol. 10, No. 3, Article 10, Publication date: July 2007.
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Fig. 1. GDH distribution for the basic trigon (example, when n = 5 and � = T5).

Fig. 2. GDH distribution for the extended trigon (example, when n = 5 and � = E5).

� The basic trigon (see Figure 1): � has the following triangular structure Tn

(which is involved in the security of the group DH method [Bresson et al.
2001b]):

Tn =
⋃

1≤ j≤n

⋃
1≤k≤ j

{ {
i | 1 ≤ i ≤ j , i 	= k

} }

� The extended trigon (see Figure 2): � has the following structure En (which
is involved in the security of the dynamic group DH methods [Bresson et al.
2001a, 2002a]): it is similar to the above Tn structure, but with an extended
n − 1th line.

En =
⋃

1≤ j≤n−2

⋃
1≤k≤ j

{ {
i | 1 ≤ i ≤ j , i 	= k

} }
∪

⋃
1≤k<l≤n

{ {
i | 1 ≤ i ≤ n, i 	= k, l

} } ∪
⋃

1≤k≤n

{ {
i | 1 ≤ i ≤ n, i 	= k

} }

� The generalized group Diffie-Hellman distribution: � = P(In)\{In} is all the
proper subsets of {1, . . . , n} [Boneh 1998; Naor and Reingold 1997; Steiner
et al. 1996].

2.2 The Group Diffie–Hellman Problem

Given an integer n and a structure �, a (t, ε) group computational Diffie–
Hellman attacker (G-CDH� attacker, for short) for G is a probabilistic Turing
machine � running in time t that given a tuple from GDH�, outputs g x1···xn

with probability greater than ε:

Succ
gcdh�

G
(�)

def= Pr
xi

[
�(View�(x1, . . . , xn)) = g x1···xn

] ≥ ε

The G-CDH� problem is (t, ε)-intractable, if there is no (t, ε)- G-CDH�

attacker for G. The G-CDH� assumption states this is the case for all
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Fig. 3. Successive flows, when n = 4.

polynomial t and nonnegligible ε, for a family � = {�n}n. If n = 2, we get
the well-known computational Diffie–Hellman problem, for which we use the
straightforward notation Succcdh

G
(·).

2.3 The Group Decisional Diffie–Hellman Problem

The decisional problem consists, informally, to distinguish between g x1···xn and
a random power gr . To that goal, we either add to the tuple View(xi) the “right”
value or a random one, obtaining two kinds of tuples View$ and View�. Thus,
it leads to two additional distributions from the GDH distribution:

GDH�
� = {View�

�(x1, . . . , xn) | x1, . . . , xn ∈R Zq}
GDH$

� = {View$
�(x1, . . . , xn, r) | x1, . . . , xn, r ∈R Zq}

where

View�
�(x1, . . . , xn) = View�(x1, . . . , xn) ∪ {(In, g x1···xn)}

View$
�(x1, . . . , xn, r) = View�(x1, . . . , xn) ∪ {(In, gr )}

Given an integer n and a structure �, a (t, ε) group decisional Diffie–Hellman
distinguisher (G-DDH� distinguisher) for G is a probabilistic Turing machine

� running in time t that, given an element X from either GDH$
� or GDH�

�

outputs 0 or 1 such that:

Adv
gddh�

G
(�)

def=∣∣∣ Pr
xi

[
�(View�

�(x1, . . . , xn)) = 1
]

− Pr
xi ,r

[
�(View$

�(x1, . . . , xn, r)) = 1
]∣∣∣ ≥ ε

The G-DDH�-problem is (t, ε)-intractable if there is no (t, ε)- G-DDH�

distinguisher for G. The G-DDH assumption states this is the case for all
polynomial t and nonnegligible ε, for a family � = {�n}n. If n = 2, we get the well-
known decisional Diffie–Hellman problem, for which we use the straightforward
notation Advddh

G
(·).

2.4 The Random Self-Reducibility Property

The Diffie–Hellman problems have the property of random self-reducibility.
Certainly, the most common is the additive random self-reducibility,
which works as follows. Given, for example, a G-CDH� instance
with � = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}}, View = View�(x1, x2, x3) =
(g x1 , g x2 , g x3 , g x1x2 , g x2x3 , g x1x3 ) for any x1, x2, x3 it is possible to generate a
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random instance

View′ = View�(x1 + r1, x2 + r2, x3 + r3)

= (g (x1+r1), g (x2+r2), g (x3+r3),

g (x1+r1)(x2+r2), g (x2+r2)(x3+r3), g (x1+r1)(x3+r3))

where r1, r2, and r3 are random numbers in Zq , whose solution may help us to
solve View. Indeed, given the solution z = g (x1+r1)·(x2+r2)·(x3+r3) to the instance
View′, it is possible to recover the solution g x1x2x3 to the random instance View:

g x1x2x3 = z · (g x1x2 )−r3 · (g x1x3 )−r2 · (g x2x3 )−r1 · (g x1 )−r2r3

· (g x2 )−r1r3 · (g x3 )−r1r2 · g−r1r2r3 .

However the cost of such a computation may be high; furthermore, it is easily
seen that such a reduction works for the generalized DH-distribution � only
and thus its cost increases exponentially with the size of View.

On the other hand, the multiplicative random self-reducibility works for any
form of the GDH problems in a prime-order cyclic group. Given, for example, a
G-CDH� instance with � = {{1}, {2}, {1, 2}, {1, 3}}, View = View�(x1, x2, x3) =
(g x1 , g x2 , g x1x2 , g x1x3 ) for any x1, x2, x3, it is easy to generate a random instance

View′ = View�(x1r1, x2r2, x3r3) = (g x1r1 , g x2r2 , g x1r1·x2r2 , g x1r1·x3r3 )

where r1, r2, and r3 are random numbers in Z∗
q . Given the solution K ′ to the

instance View′, we directly get the solution K = K ′δ, where δ = (r1r2r3)−1 mod
q, to the instance View. Such a reduction is efficient and only requires a linear
number of modular exponentiations, but is restricted to prime order groups.
The latter restriction is not so strong, since these groups are the usual ones
anyway, where the Diffie–Hellman problems are the most difficult to solve.

2.5 Relations Among the Diffie–Hellman Problems

In our paper [Bresson et al. 2002b], we state several relations between all these
problems.

THEOREM 1 (INTRACTABILITY OF GDDH). The intractability of the group de-
cisional Diffie–Hellman problem is implied by the intractability of the decisional
Diffie–Hellman problem. If � is either the basic or the extended trigon, then we
have:

Adv
gddh�

G
(t) ≤ (2n − 3) Advddh

G
(t ′) with t ′ ≤ t + n3tG

where tG is the time needed for an exponentiation in G.

THEOREM 2 (INTRACTABILITY OF GCDH). The intractability of the group com-
putational Diffie–Hellman problem is implied by the intractability of the compu-
tational Diffie–Hellman problem and the intractability of the decisional Diffie–
Hellman problem. If � is either the basic or the extended trigon, then we have:

Succ
gcdh�

G
(t) ≤ Succcdh

G
(t ′) + (n − 2) Advddh

G
(t ′)

where t ′ ≤ t + n3tG
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The proofs of these two theorems are provided in the appendix and were
originally published in Bresson et al. [2002b]. More precisely, in the later paper,
we have identified formal criteria allowing us to define “good structures” � for
which the hybrid reduction above can actually be performed. The basic and
extended trigons do satisfy these criteria and are thus considered as appropriate
for the reduction theorem.

3. MODEL

In this section, we describe our formal model, which is, again, derived from
that by Bellare and Rogaway [1993a, 1995]. The formalism models instances of
players via oracles available to the adversary through queries.

3.1 Players

We fix a nonempty set U of N players that can participate in a group key-
exchange protocol P . A player Ui ∈ U can have many instances; we denote
instance t of player Ui as �t

i with t ∈ N. A given instance can be involved in,
at most, one execution of P . For each concurrent execution of P , we consider
the nonempty set I, called the multicast group, composed of players instances
involved in that execution. We emphasize that each set I is related to one unique
execution of the protocol.2 Finally, in a multicast group I of size n, we denote by
I1, . . . , In, the indexes of players involved in this group; this allows to translate
numbering of players into numbering of instances involved in a given group.

As in previous works, there is in I a group controller GC(I) who initiates
the addition of players or the removal of players from the multicast group. The
group controller is trusted to do only this; in our protocols, the group controller
is (essentially) the player instance with the highest index in U (see details in
Section 4).

To properly deal with security issues, and for the sake of modularity, we will
distinguish two kinds of module each instance is given access to. First, there
is a secure coprocessor (the key-exchange module—KEM) which performs (in
a tamper-resistant fashion) the cryptographic computations. Second, there is
an authentication device (the authentication module—AM), such as a smart
card, which because of its lower computational power, is only in charge of the
authentication mechanism.

3.2 Abstract Interface

We define the basic structure of a dynamic group key-exchange protocol. A
dynamic group key-exchange scheme GKE consists of four algorithms:

� The key-generation algorithm GKE.KGEN(1�) is a probabilistic algorithm,
which, on input of a security parameter 1�, provides each player in U with a
long-lived key LLU . The structure of LLU depends on the particular authen-
tication scheme.

2That is, if players U1 and U2 are running two concurrent executions of P , the first one involving

instance �t
1

of U1 and instance �t′
2

of U2, the second one involving instance �s
1

of U1 and instance

�s′
2

of U2, then there will be two multicast groups to deal with: I = {�t
1
, �t′

2
} and I ′ = {�s

1
, �s′

2
}.
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The three other algorithms are interactive multiparty protocols between play-
ers in U , which provide each principal in the new multicast group with a new
session key sk.

� The setup algorithm GKE.SETUP(J ), on input of a set of instances of players
J , creates a new multicast group I, and sets it to J .

� The remove algorithm GKE.REMOVE(I, J ) creates a new multicast group and
sets it to I\J .

� The join algorithm GKE.JOIN(I, J ) creates a new multicast group and sets
it to I ∪ J .

An execution of P consists of running the GKE.KGEN algorithm once and then
many concurrent executions of the three other algorithms. We will also use
the term operation to mean one of the algorithms: GKE.SETUP, GKE.REMOVE, or
GKE.JOIN.

Whenever a membership operation is performed on a multicast group I, we
are going to create a new instance for each player in the resulting multicast
group, say J ; in other words, the multicast group I continues to live (with its
own session key), while the new multicast group J is being constructed. Player
instances in I continue to execute their own processes (e.g., answering the
queries asked by the adversary) and newly created instances run independent
processes in J . We emphasize that the multicast group creation is a monotone
process: once created, a group continues to live until the end of the game. In
particular, if a player joins a group I (therefore, creating a group J ) and then
leaves the group J , the resulting multicast group is not I, but a newly created
one I ′ (even if its membership is identical to I from the player point of view,
they are made of different instances).

3.3 Security Model

The adversary A is given access to the oracles and interacts with them via the
queries described below. We explain the capabilities that each kind of query
captures:

These oracles provide the adversary with the ability to initialize a multicast
group via Setup queries, add players to the multicast group via Join queries,
and remove players from the multicast group via Remove queries. By making
these queries available to the adversary at any time, we provide it with the
ability to generate concurrent changes in the membership. We also take into
account hardware devices and model their interactions with the adversary via
specific queries.

3.3.1 Queries to Players Instances. We define the oracle queries as the in-
teractions between A and the oracles only. These queries model the attacks an
adversary could mount through the network.

� Send(�t
U , m): This query models A sending messages to instance oracles.

A gets back from its query the response that �t
U would have generated in

processing message m according to P .
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� Setup(J ), Remove(I, J ), or Join (I, J ): These queries model the adversary
A initiating one of the operations GKE.SETUP, GKE.REMOVE, or GKE.JOIN. Ad-
versary A gets back the flow initiating the execution of the corresponding
operation. Note that, combined with Send queries, these three operation
queries are enough to model both passive and active attacks. While they only
send back the flow initiating the actual operation, the answer can be for-
warded to the appropriate player, which answer is also forwarded, etc. This
way, passive attacks can be modeled. Of course, the adversary can alter the
message before forwarding it, which models active attacks.

� Reveal(�t
U ): This query models the attacks resulting in the loss of the session

key computed by oracle �t
U ; it is only available toA if oracle �t

U has computed
its session key skt

U (�t
U has set its flag accept to true).A gets back skt

U which
is otherwise hidden.

3.3.2 Corruption Capabilities. The adversary A can bypass the tamper-
detection mechanisms [Weingart 2000], through physical or side-channel at-
tacks. Such capabilities are modeled via the following two queries:

� Corruptam(U ): This query models A corrupting the authentication module
(the smart card). A gets back the player’s LL-key.

� Corruptkem(�t
U ): This query models A corrupting the key exchange module

(the secure coprocessor). A gets back the private memory of the instance. This
query is only available in the strong corruption model (see below).

3.4 Security Notions

The main security requirement for a secure group key-exchange method to
achieve is “implicit” authentication. In authenticated key exchange (AKE), each
party is assured that no other party aside from the intended pool of players can
learn any information about the session key. An additional security notion is
“explicit” authentication or key confirmation, often both referred to as mutual
authentication (MA). MA should not be mistaken for the liveness property,
which provides guarantees on the delivery of messages [Backes and Cachin
2003; Chockler et al. 2001]. MA ensures each player that his partners (or pool
thereof) have actually computed the shared session key.

In the following, we only focus on the AKE notion, since this is the most
important one. Furthermore, classic techniques are known to enhance it with
MA, such as additional key-confirmation rounds.

3.4.1 Partnering. The partnering captures the intuitive notion that the
instances with which a given instance � has exchanged messages in executing
an operation, correspond to players with which � believes it has established a
session key. Another simple way to understand the notion of partnering is that
an instance �′ is a partner of � in the execution of an operation, if � and �′

have directly exchanged messages or there exists some sequence of instances
that have directly exchanged messages from � to �′.

More formally, let us first denote by SIDS(�) the set of all the significant flows
sent and received by � before acceptance (flag accept set to true). By significant
flows, we mean flows with high entropy and, thus, specific to the execution of the
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actual protocol. A first round of nonces is often used to introduce high entropy
and to avoid to make players, from different executions, to be partners.

In an execution of P , we say that two instances � and �′ are directly part-
nered if both instances accept and SIDS(�)∩SIDS(�′) 	= ∅ holds. We denote the
direct partnering as � ↔ �′.

We also say that instances � and �′ are partnered if they both accept and
if, in the graph GSIDS = (V , E) where V = {�t

U : U ∈ U , t ∈ N} and E =
{(�t

U , �t ′
U ′ ) : �t

U ↔ �t ′
U ′ } the following holds:

∃k > 1, (�1, �2, . . . , �k) with

⎧⎨
⎩

�1 = �,
�i−1 ↔ �i for i = 1, . . . , k
�k = �′

We denote this partnering as � � �′.
We complete in polynomial time (in |V |) the graph GSIDS to obtain the graph of

partnering: GPIDS = (V ′, E ′), where V ′ = V and E ′ = {(�t
U , �t ′

U ′ ) : �t
U � �t ′

U ′ },
and then define the partner identities for oracle � as:

PIDS(�) = {�′ : �′ � �}.
3.4.2 Semantic Security

3.4.2.1 The Test query. This query, that we denote Test(�t
U ), models the

semantic security of the session key skt
U . It is asked only once in the following

AKE attack game and is meaningful only if oracle �t
U is still Fresh at the

end of the game (which informally means that the session key is not trivially
known to the adversary and it will be defined more formally below). The query
is answered according to a private (i.e., out of A’s view) bit b. If b = 0, a random
�-bit string is returned; if b = 1, the session key skt

U is returned. We use this
query to define A’s advantage.

3.4.2.2 AKE Security. The security definition for P takes place in the fol-
lowing game, denoted Gameake(A, P ). The game is initialized by providing coin
tosses to A, GKE.KGEN(·) and any oracle �t

U and by running GKE.KGEN(1�)
to set up players’ LL-keys. A bit b is as well flipped to be later used in the
Test query. The adversary then starts interactions with the players instances:
he can ask Send, Setup, Join, Remove, Reveal queries, as well as, depending
on the considered corruption model, Corrupt queries; in addition, A can ask, at
most, one Test query, but at any time of its choice. When A terminates it outputs
a bit b′. We say that A wins the AKE game if b = b′ and the “ Test-ed” instance
is still Fresh (see below). Note, A can trivially win with probability 1/2 and,
thus, we define A’s advantage by Advake

P (A) = 2 × Pr[b = b′] − 1. Protocol P is
an (t, ε)-secure AKE protocol if Advake

P (A) is lower than ε for all adversary A
running in time t.

3.4.3 Freshness. As already introduced, the freshness formalizes the fact
that the session key is not obviously known by the adversary through basic
means. On top of this and because the corruption capabilities of an adversary
can make him learn the session key trivially, the definition is relevant to the
notion of forward secrecy, which entails that the corruption of a player does not
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compromise the previously established session keys. However while a corrup-
tion may have exposed the long-term key of a player, it may have also exposed
the player’s internal data3 (for instance, an ephemeral, private GDH exponent).
Hence, we define several flavors of freshness, depending on which corruptions
are allowed.

1. Scenario without any Corrupt query. We say that an oracle �t
U is Fresh, in

the current execution (or holds a Fresh sk) if (i) �t
U has accepted, and (ii)

neither he nor his partners has been asked for a Reveal query.

2. Standard corruption model. Here the adversary has the ability to make
Corruptam queries only. We use this model when dealing with (perfect) for-
ward secrecy, which we refer to as fs. We say that an oracle �t

U is fs-Fresh,
in the current execution, if: (i) �t

U has accepted, (ii) neither �t
U nor his part-

ners has been asked for a Reveal query, and (iii) no Corruptam query has been
made (to U or his partners) by A before �t

U accepted (no Corruptkem query is
allowed at all).

3. Strong corruption model. Here the adversary has the ability to make both
Corruptam and Corruptkem queries. We use this model when considering strong
forward secrecy, which we refer to as sfs. We say that an oracle �t

U is sfs-
Fresh, in the current execution, if: (i) �t

U has accepted, (ii) neither �t
U nor

his partners have been asked for a Reveal query, and (iii) neither Corruptam

query has been made (to U or his partners) by A before �t
U accepted nor a

Corruptkem query has been made to �t
U by A.

At an intuitive level, the standard corruption model is to be used when
ephemeral data are protected in a tamper-resistant device: the adversary can-
not see them. On the other hand, considering the strong corruption model allows
to deal with scenarios in which the adversary can obtain ephemeral data. How-
ever, if we want to limit the damages of such leakage of information, we need
to assume that these data are securely erased once they are no longer useful.

Remark 1. In the definition of freshness, one can note that only Reveal
queries can later change the status of freshness of a key (or an instance): any
Corrupt query does not change anything when the key is agreed on. However,
if the adversary asks a Reveal query to the instance, or any of his partners,
the instance is no longer fresh. This is the reason why it is essential for the
partnering to be a public relation so that the adversary is aware of altering the
freshness when asking a Reveal query.

4. AUTHENTICATED GROUP DIFFIE–HELLMAN PROTOCOL

We describe the authenticated group DH protocol, which was formerly pre-
sented in our previous paper [Bresson et al. 2002a]4 under the name AKE1, by

3Remind that the freshness notion is relative to an instance, not to a player. And in a concurrent

setting, each Join/Remove operation results in creating a new multicast group with a new session

key; that later, however, is typically updated from the previous one using these internal data, and

hence the corruption should distinguish whether these data are revealed or not.
4The initial formal model in Bresson et al. [2001a, 2001b] enabled us to propose a first protocol

named AKE1. This was later refined in Bresson et al. [2002a].
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Fig. 4. Algorithm Setup. A practical example with four players I = {U1, U2, U3, U4}.

splitting it into functions that help us to implement the GKE abstract interface.
These functions specify in a modular way how cryptographic transformations
are performed, and abstract out the details of the transformations. In the follow-
ing, we identify the multicast group to the set of indexes (instances of players)
in it. We use a security parameter � and, to make the description easier, see a
player Ui not involved in the multicast group as if his private exponent xi were
equal to 1.

4.1 Overview

The protocol AKE1 consists of the Setup, Remove, and Join algorithms. As il-
lustrated letter in Figures, 4, 5 and 6, in AKE1 the players are arranged in a
ring and the instance with the highest index in the multicast group I is the
group controller GC(I): GC(I) = �t

In
for some t, if n is the size of the mul-

ticast group. When some players ask to join the group, the group controller
initiates the protocol with the joining players; when some players are leaving,
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Fig. 5. Algorithm Remove. A practical example with four players: I = {U1, U2, U3, U4} and J =
{U2, U4}. The new multicast group is I = {U1, U3} and GC = U3.

the remaining player with the highest index is the new group controller and
performs the broadcast to update the group key. Even if it is not said precisely
in the description of the algorithms, each instance saves the set of values it re-
ceives in the downflow broadcast of Setup, Remove, and Join. In the subsequent
removal of players from the multicast group, any oracle � could be selected as
the group controller GC and so will need these values to execute Remove (that
is, to generate a new broadcast from the saved one).

The session-key space SK associated with the protocol AKE1 is {0, 1}�
equipped with a uniform distribution. The arithmetic is in a group G = 〈g〉
of prime order q in which the DDH assumption holds.

4.2 Authentication Module

The authentication mechanism Auth supports the following functions:

� Auth.KGEN(1k , i, j ). This function, from the given security parameter 1k , gen-
erates a pair of keys, which is either a pair of matching public/secret keys
(PKi, SKi) for player Ui, or a symmetric key Kij = PKi j = SKi j between a
sender Ui and a receiver U j . The secret keys are never exposed.
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Fig. 6. Algorithm Join. A practical example with 4 players: I = {U1, U3}, J = {U4} and GC = U3.

The new multicast group is I = {U1, U3, U4}.
� Auth.SIGN(i, j , m). This function authenticates a message m between a sender

Ui and a receiver U j , by using the authentication key SKi j . It returns au-
thenticated data that is denoted μ = [m]i j .

� Auth.VER(i, j , m, μ). This function checks whether μ is an authenticator on
message m from a sender Ui to a receiver U j with respect to the verification
key PKi j . The boolean answer is returned.

The two latter functions should, of course, be called after initializing the keys
via Auth.KGEN(·). Then we define the notion of signing oracle. An Auth.SIGN-
oracle for messages authentication is an oracle that takes as input two indexes
i and j and a message m, and returns an authenticator data μ = [m]i j using
the authentication key generated by Auth.KGEN(1k , i, j ).

Definition 1 (Chosen Message, Existential Unforgeability). A (t, q, ε)-Auth-
forger F is a probabilistic Turing machine running within time t that requests
an Auth.SIGN-oracle up to q messages (and for any pair of indexes), and outputs,
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(m, μ, i, j ), where m is a message authenticated by μ = [m]i, j , and without
having queried the Auth.SIGN-oracle on message m, with the corresponding en-
tities (i, j ), with probability at least ε. We denote this success probability as
Succcma

auth(t, q), where CMA stands for (adaptive) Chosen-Message Attack. The
Auth scheme is (t, q, ε)-CMA-secure if there is no (t, q, ε)-Auth-forger.

Any appropriate signature scheme SIGN or message authentication code MAC
can be used.

4.3 Key Derivation

Informally, a key-derivation function (KDF for short) is defined as follows:

� A function KDF, that given a string x sampled from an arbitrary distribution,
together with a uniformly distributed randomizer, outputs a string of a fixed
length.

Clearly, in the random oracle model [Bellare and Rogaway 1993b], a hash
function is a perfect key-derivation function, however, it does not provide the
same level of security as a proof in the standard model [Canetti et al. 1998]. In
the standard model, KDF has to be implemented with more sophisticated tools,
such as the left-over hash lemma [Håstad et al. 1999] with authenticated ran-
domness, or a deterministic randomness extractor, to obtain (almost) uniformly
distributed values over {0, 1}�.

4.4 Key-Exchange Module

The key-exchange mechanism supports the following functions. They are es-
sentially performed in the secure coprocessor, out of which the ephemeral
Diffie–Hellman exponent should not leak; most of them, however, invoke the au-
thentication mechanism functions, which means that communication between
these two devices are assumed. The content of these communications is subject
to attacks when considering the strong corruption model.

The following functions help to build the trigon of successive flows that will be
sent in the protocol (as shown in Figure 3). One may use these functions to pick
a private exponent (GDH PICKS(·) and GDH PICKS

�(·)), to go through the lines of the
trigon (GDH UP(·)), to return the values needed to compute the key (GDH DOWN(·)),
to restart going through the lines (GDH UP AGAIN(·)), to return needed values
again (GDH DOWN AGAIN(·)), and to compute the key itself (GDH KEY(·)).
�

GDH PICKS(i). This function generates a new private exponent xi
R← Z�

q . It also
erases any previous exponent x ′

i. However, note that xi is never exposed.
�

GDH PICKS
�(i). This function invokes GDH PICKS(i) to generate xi but does not

delete the previous private exponent x ′
i. The latter exponent x ′

i is only deleted
when explicitly asked for by the instance.

�
GDH UP(i, j , k, Fl, μ). This function forwards the successive values in the
group by performing the following steps.

1. if j > 0, the authenticity of tag μ on message Fl is checked with
Auth.VER( j , i, Fl, μ); if the verification fails, the protocol stops.
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2. Fl is parsed as a set of intermediate values (I, Y , Z ), where I is the
multicast group and

Y =
⋃

k=1,...,i−1

{
Z 1/xk

}
with Z = g

∏i−1
k=1 xk

The values in Y are then raised to the power of xi and then concatenated
with Z to obtain these intermediate values

Y ′ =
⋃

k=1,...,i−1

{
Z xi/xk

} ∪ {
Z

} =
⋃

k=1,...,i

{
Z xi/xk

} =
⋃

k=1,...,i

{
Z ′1/xk

}
where Z ′ = Z xi = g

∏i
k=1 xk .

3. Fl′ = (I, Y ′, Z ′) is authenticated, by invoking Auth.SIGN(i, k, Fl′) to ob-
tain tag μ′. The flow ( Fl′, μ′) is returned.

�
GDH DOWN(i, j , Fl, μ). This function prepares the set of values to be broad-
casted by performing the following steps.
1. The authenticity of ( Fl, μ) is checked, by invoking Auth.VER( j , i, Fl, μ); if

the verification fails, the protocol stops.
2. The flow Fl′ is computed as in GDH UP, from Fl = (I, Y , Z ), but without

the last element Z ′ (i.e., Fl′ = (I, Y ′)).
3. The flow Fl′ is appended tags μ1, . . . , μn by invoking Auth.SIGN(i, k, Fl′),

where k ranges in I. The tuple ( Fl′, μ1, . . . , μn) is returned.
�

GDH UP AGAIN(i, k, Fl = (I, Y ′)). This function restarts the process by refresh-
ing the ith line as follows. From Y ′ and the previous random x ′

i, one can
recover the associated Z ′ (by raising the last component of Y ′ to the power
of x ′

i). In this tuple (Y ′, Z ′), one replaces the occurrences of the old random
x ′

i by the new one xi (by raising some elements to the power xi/x ′
i) to obtain

Fl′. The latter is authenticated by computing a tag μ′ via Auth.SIGN(i, k, Fl′).
The pair ( Fl′, μ′) is returned. From now the old random x ′

i is no longer needed
and, thus, can be erased.

�
GDH DOWN AGAIN(i, Fl = (I, Y ′)). This function refreshes the set of values to
be broadcast as follows. In Y ′, one replaces the occurrences of the old random
x ′

i by the new one xi, to obtain Fl′. This flow is appended tags μ1, . . . , μn by
invoking Auth.SIGN(i, k, Fl′), where k ranges in I. The tuple (Fl′, μ1, . . . , μn)
is returned. From now the old random x ′

i is no longer needed and, thus, can
be erased.

�
GDH KEY(i, j , Fl, μ) produces the session key sk. First, the authenticity of the
flow (Fl, μ) is checked with Auth.VER( j , i, Fl, μ). Second, the value α = g

∏
j∈I x j

is computed from the private exponent xi and the corresponding value in Fl.
Third, sk is defined to be KDF(I‖ Fl‖α).

Intuitively, the basic protocol runs as follows. Each successive player will
use GDH PICKS to get its own private exponent and GDH UP to embed it in the
received values and to forward the new values to the next player; this process
starts from an empty set of values. The last player then will use GDH DOWN to
broadcast the sufficient information such that each player can compute the key,
using GDH KEY. When one (or more) player(s) wants to join the group, the last
player in the current group refreshes its private exponent with GDH PICKS

� and
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restarts sending successive values via GDH UP AGAIN. The joining players will use
GDH UP to embed their contribution until the last joining player. The latter will
broadcast, as previously, a set of values using GDH DOWN. When one (or more)
player(s) wants to leave the group, the highest index remaining player refreshes
its private exponent with GDH PICKS

� and will use GDH DOWN AGAIN to generate a
new broadcast such that the other remaining players can compute the key (via
GDH KEY) and then set the accept flag to true. A more formal description is given
below.

4.5 Setup(I)

This algorithm consists of two stages: the upflow and the downflow (see
Figures 3 and 4). Remember that Ii denotes the index (in U) of the ith ora-
cle instance involved in I. Let n be the number of instances in I.

One starts with the convention I0 = 0, Fl0 = (I, {g}) and μ0,i = ∅.
Then, on the upflow, each oracle �t

Ii
for i = 1, . . . , n invokes GDH PICKS(Ii)

to generate its private exponent xIi and then (only if i ≤ n − 1) invokes
GDH UP(Ii, Ii−1, Ii+1, Fli−1, μi−1,i) to obtain both flow Fli and tag μi,i+1. Then,
�t

Ii
, forwards (Fli, μi,i+1) to the next oracle in the ring. The downflow takes

place when GC(I) receives the last upflow. Upon receiving this flow, GC(I)
invokes GDH DOWN(In, In−1, Fln−1, μn−1,n) to compute both Fln and the tags
μ1, . . . , μn. GC(I) broadcast ( Fln, μ1,. . . , μn). Finally, each oracle �t

Ii
invokes

GDH KEY(Ii, In, Fln, μi) and gets back the session key skt
Ii

(and accepts the
session).

To illustrate this, assume U2, U4, and U6 run the algorithm. Then we have
I1 = 2, I2 = 4, and I3 = 6; we slightly abuse the notation and denote for all of
them the session by t so that I = {�t

2, �t
4, �t

6}. The protocol starts by having �t
2

choosing x2 and, from (2, 0, 4, (I, {g}), ∅), generates Fl1 = (I, {g , g x2}) together
with an authenticator μ12. The second player instance �t

4 chooses x4 and gener-
ates from (4, 2, 6, Fl1, μ12) the values Fl2 = (I, {g x4 , g x2 , g x2x4}) and μ23. Finally
�t

6 generates the broadcast via GDH DOWN(6, 4, Fl2, μ23) = Fl3, μ31, μ32, μ33,
where Fl3 = (I, {g x4x6 , g x2x6 , g x2x4}). The instance �t

2 and �t
4 compute the ses-

sion key as GDH KEY(2, 6, g x4x6 , μ31) and GDH KEY(4, 6, g x2x6 , μ32), respectively.5

Here the session key is computed from the common secret g x2x4x6 .

4.6 Remove(I, J )

This algorithm consists of a downflow only (see Figure 5). Let n be the size
of I and m be the size of I\J . The group controller GC(I ′) of the new set
I ′ = I\J invokes GDH PICKS

�(I ′
m) to get a new private exponent and then

GDH DOWN AGAIN(I ′
m, Fl′), where Fl′ is the saved previous broadcast; the function

makes use of both exponents (the newly generated one and the old one), but
erases the old one at the end. GC(I ′) obtains a new set of intermediate val-
ues from which it simply deletes the elements related to the removed players
(in the set J ) and updates the multicast group to be I ′. This produces the new

5To be correct, the function GDH KEY(·) takes as a third input the entire set of values Fl, but here

we wrote only the value that the player is going to use to make the mechanism clearer.
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broadcast flow Flm with some tags μ1, . . . , μm. Upon receiving the downflow, �t
I ′

i

invokes GDH KEY(I ′
i , I ′

m, Flm, μi) and gets back the session key skt
I ′

i
(and accepts

the session). Here is the reason why an oracle must store its private exponent
and only erase its internal data when it leaves the group.

To illustrate this, assume U6 wishes to leave the group built in the previ-
ous example. The new multicast group is now I ′ = {�t

2, �t
4}. The group con-

troller for I ′ is �t
4. It first chooses a new exponent x ′

4 without erasing the
previous x4. From the saved broadcast Fl′ = (I, {g x4x6 , g x2x6 , g x2x4}) and using
GDH DOWN AGAIN(4, Fl′) it generates a “full” new broadcast {g x ′

4x6 , g x2x6 , g x2x ′
4}

from which it deletes the term to be used by �t
6 (the leaving member). The new

broadcasted values are thus Fl2 = (I ′, {g x ′
4x6 , g x2x6}), together with some au-

thenticators μ1, μ2. The other player �t
2 can recover the common secret g x2x ′

4x6

with its old exponent x2: that is, it does not have to pick a new exponent. Also
note that the leaving player “left” its own exponent in the common secret, but
cannot use it to get the session key.

4.7 Join(I, J )

This algorithm also consists of the two stages: upflow and downflow (see
Figure 6). Let n be the size of I and m be the size of I ∪ J . On the upflow,
the group controller GC(I) of the old group invokes GDH PICKS

�(In), and then
GDH UP AGAIN(In, j , Fl′), where Fl′ and j = �t

J1
are, respectively, the saved pre-

vious broadcast and the index of the first joining player. It updates I into I ′

and forwards the result to the first joining player. From that point in the execu-
tion, the protocol works as the algorithm Setup, where the (temporary) group
controller of the new group I ′ = I ∪J is the highest index player in J , that is,
�t

J|J | : the joining players will use GDH UP until the group controller; the latter

will use GDH DOWN to perform the broadcast.
Again, to illustrate this, assume U1 and U3 wish to join the group

built in the previous example. The new multicast group is now I ′ =
{�t

1, �t
2, �t

3, �t
4}. The group controller for I was �t

4. Thus, it first chooses
a new exponent x ′′

4 without erasing the previous x ′
4. From the saved broad-

cast Fl′′ = (I, {g x ′
4x6 , g x2x6}), and using GDH UP AGAIN(4, 1, Fl′′), it generates

a “fresh” upflow Fl2 = (I ′, {g x ′′
4 x6 , g x2x6 , g x2x ′′

4 x6}) together with μ23, and for-
wards these values to �t

1. �t
1 then picks x1 and, using GDH UP(1, 4, 3, Fl2, μ23),

produces Fl3 = (I ′, {g x1x ′′
4 x6 , g x1x2x6 , g x2x ′′

4 x6 , g x1x2x ′′
4 x6}) and μ34. The latter

picks x3 and, using GDH DOWN(3, 1, Fl3, μ34), generates the broadcasted values
{g x1x3x ′′

4 x6 , g x1x2x3x6 , g x2x3x ′′
4 x6 , g x1x2x ′′

4 x6}.

5. ANALYSIS OF SECURITY

In this section, we assert that the protocol AKE1 securely establishes a session
key. We refine the notion of forward secrecy to take into account two modes
of corruption and use it to define two notions of security. We show that when
considering the standard corruption mode the protocol AKE1 is secure under
standard assumptions. This proof can, in turn, be adapted to cope with the
strong corruption mode.
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5.1 Security Results

A theorem asserting the security of some protocol measures how much compu-
tation and interactions helps the adversary. One sees that AKE1 is a secure
AKE protocol provided that the adversary does not solve the group decisional
Diffie–Hellman problem (G-DDH) or forges an authentication tag. These terms
can be made negligible by appropriate choice of parameters for the group G and
authentication mechanisms. The other terms can also be made “negligible” by
an appropriate instantiation of the key derivation functions.

THEOREM 4 (AKE SECURITY IN THE STANDARD CORRUPTION MODEL). LetA be an
adversary against protocol P, running in time T, allowed to make at most Q
queries (Setup, Join, Remove, Send, Corruptam). The adversary is also restricted
to not ask Corruptkem queries. Let n be the number of players (among the N total
number of players) involved in the operations, which lead to the group on which
A makes the Test query. Then we have:

Advake
P (A) ≤ 2nQ · Adv

gddh�

G
(T ′) + 2N (N − 1) · Succcma

auth(T, Q) + 2nQ · δ

where δ denotes the distance between the output of KDF(·) and the uniform distri-
bution over {0, 1}�, T ′ ≤ T + QnTexp(k), where Texp(k) is the time of computation
required for an exponentiation modulo a k-bit number, and � = En corresponds
to the elements adversaryA can possibly learn (the extended trigon, see Figure 2):

En =
⋃

1≤ j≤n−2

⋃
1≤k≤ j

{{i | 1 ≤ i ≤ j , i 	= k}}

∪
⋃

1≤k<l≤n

{{i | 1 ≤ i ≤ n, i 	= k, l }} ∪
⋃

1≤k≤n

{{i | 1 ≤ i ≤ n, i 	= k}}

NOTE 1. If the authentication means is a signature scheme (the verification
is independent of the recipient), the security result becomes

Advake
P (A) ≤ 2nQ · Adv

gddh�

G
(T ′) + 2N · Succcma

sign(T, Q) + 2nQ · δ

Furthermore, we assume we know n, the number of players involved in the
operations, which lead to the group on whichAmakes the Test query. It is, indeed,
not a uniform reduction, but with an additional linear factor N, the reduction
can be made uniform, first guessing n.

When we talk about the “players involved in the operations, which lead to the
group on which A makes the Test query,” we mean a player an instance of whom
has joined the group at least once since its setup. As an illustrative example,
assume a multicast group is initialized by Setup(�t

2, �t
4, �t

6), then �t
6 leaves,

then �s
1, �s

3 join, and the Test query is asked to any of them �s
1, �t

2, �s
3, �t

4. The
number of players that have been involved so far is n = 5, even if the size of
the Test-ed group is 4. Note that we have n ≤ N : a player which joins, leaves,
then joins again is counted only once (though different instances of the player
have to be considered).

5.2 Proof of the Main Theorem

Let A be an adversary that can get an advantage ε in breaking the AKE security
of protocol P within time t, assuming n players have been involved in the
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protocol. Let b and b′ be defined as in Section 3, namely, the bit underlying the
answer to the Test query and the bit output by the adversary, respectively. We
denote the event b = b′ by Guess.

5.2.1 Proof Overview. Intuitively, and in order to reduce the security to the
G-DDH problem, the flows sent by the players’ instances in the crucial session

(the one in which the session key will be Test-ed) will be somehow “replaced”
by the lines of the extended trigon D (so that distinguishing the key from a
random value corresponds to solving the G-DDH problem). This replacement
is viewed as successive modifications to the original game: we incrementally
define a sequence of games starting at G0 and ending up at G5. We define in
the execution of Gi−1 and Gi a certain “bad” event Ei and show that as long
as Ei does not occur, the two games are identical;6 bounding the probability
that the “bad” event happens helps in relating successive games. In our proof,
the difficulty consists in replacing the flows with simulated values without
changing the adversary’s view “too much.”

In our model, the adversary’s capabilities are viewed as queries. These
queries are answered by a simulator �. First, one may notice that Setup, Join,
and Remove queries are essentially similar to Send queries: in every case, an
oracle instance is activated and must generate an outgoing message to either
start a protocol execution or to continue it. Then, the role of �, on receiving
such queries, is to simulate the correct outgoing flow. The Corrupt query is also
straightforward to simulate by having � choosing all authentication keys by
itself. The Reveal query is the really problematic one, as soon as flows are sim-
ulated using values for which the discrete logarithm is not known (from the
G-DDH instance).

In order to answer the queries, the simulator � will also make use of several
auxiliary inputs: in particular, it will use two integers c0 and i0 (that will be
introduced in game G2) as well as an instance D of size n of the G-DDH prob-
lem: D is drawn according to the distribution GDH�

� (this auxiliary data will

be introduced in game G3), or GDH$
� (when we move to the game G4), where

� = En. The integers c0 and i0 will help � to embed D’s lines at the right place
and at the right moment. For simplicity, we informally present the auxiliary
inputs here, but they will be formally defined only in the games in which they
are necessary. Before those games, � simply ignores them.

5.2.2 Detailed Proof. We now describe each successive game. The core of
the proof is in game G3, in which � actually uses instance D to replace the real
flows with the simulated ones.

5.2.2.1 Game G0. This game G0 is the real attack Gameake(A, P ), where �

simulates all the players and then all the queries knowing the authentication
keys, and choosing the random coins. At the beginning of this game, we set the
bit b at random. By definition, we have:

Advake
P (A) = 2 Pr[Guess0] − 1 (1)

6This technique has been formalized by Shoup [2001]. The point is in choosing the “bad” event.
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5.2.2.2 Game G1. The game G1 is identical to G0 except that we abort
if a forgery for the authentication mechanism is detected before any Corrupt
query: this happens when a valid tag appears in a flow (say, the adversary asks
a Send(�, ( Fl, μ)) query, with Auth.VER( Fl, μ) = 1), while the pair ( Fl, μ) has
not been produced by any instance (i.e., was not generated by � itself in answer
to a previous query). We define the forgery event Forge. Using a well-known
lemma we get: ∣∣Pr[Guess0] − Pr[Guess1]

∣∣ ≤ Pr[Forge] (2)

LEMMA 5 (–PROBABILITY OF EVENT Forge).

Pr[Forge] ≤ N (N − 1) × Succcma
auth(T ) (3)

PROOF. The proof uses a standard hybrid argument.

In this protocol, all the flows are authenticated by the sender. When the
forgeries are excluded, active attacks are also excluded: only replay attacks are
still possible. Of course, the adversary can also delay or reorder messages. Then
� only handles them if they are still meaningful: since they are signed, it knows
which exponents they contain.

5.2.2.3 Game G2. Game G2 is the same as game G1 except that we make
the simulation abort if certain conditions are not satisfied. Once the simulation
does not abort (this implying a loss in the probabilities), we are thus ensured
that the conditions are, indeed, satisfied in the next games. The reason why we
abort might appear unclear in this game (indeed, there are purely formal here),
but will become clear in the future games.

More precisely, we make use of the simulator’s auxiliary input: a random
index i0 ∈ [1, n] and a random integer c0 ∈ [1, Q]. The value c0 is a guess
for the number of operations that will occur before the Test-ed session is built
(remember that Q is an upper bound for the total number of queries), while
i0 is a guess for the player instance who will send the broadcast flow of the
“Test-ed” session. More precisely, it is its order in the list of the involved players
in the series of operations that lead to the Test-ed group. Intuitively, c0 and i0

are thought to be as follows: if the c0th operation7 is JoinP or Setup, then the
simulator hopes that the i0th player involved will be the last joining player,
otherwise, the simulator hopes it will be the group controller’s index. In the
execution of the game, if the Test-ed session is not the one completed with
the c0th operation, or if the corresponding broadcast flow is not operated by
the i0th player, the simulator outputs “Fail” and sets b′ randomly. Let E2 be
the event that these guesses are not correct. It can be noticed that the value c0

and i0 are chosen uniformly and at random in [1, Q] and [1, N ], respectively.
The probability of E2, is thus, 1 − 1/NQ. Using the fact that E2 and Guess1

7By the “kth operation,” one means the kth operation ( Setup, Join, or Remove) that has been

initiated by A for building the Test-ed group. In a concurrent setting, the original groups continue

to live whenever a membership change initiates a new group; therefore, a tree structure appears

where nodes are the groups: a new operation creates a child. The value k is thus the depth of the

Test-ed group.
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are independent, we have:

Pr[ Guess2] = Pr[Guess2 | E2] Pr[E2] + Pr[Guess2 | ¬ E2] Pr[¬ E2]

= 1

2
Pr[E2] + Pr[Guess1]

(
1 − Pr[E2]

)
Pr[E2] = 1 − 1

NQ

Therefore,

Pr[Guess2] − 1

2
= 1

NQ

(
Pr[Guess1] − 1

2

)
(4)

5.2.2.4 Game G3. Game G3 is the same as game G2 except that we slightly
modify the way the queries made by A are answered; for this reason, we will use
the fact that the guesses in game G2 were correct: the Test-ed session is built
by the c0th operation and the corresponding broadcast has been sent by the i0th
player. Based on this information, � can correctly make use of the instance D
to build the flows and answer the queries. Recall that the simulator � gets as
an auxiliary input an instance D of size n from GDH�

�, where � is the extended
trigon En.

Formally, the instance D plus its solution can be rewritten using the “lines,”
as follows:

D = View∗
En

(x1, x2, . . . , xn)

= {S1, S2(x1, x2), . . . , Sn−2(x1, . . . , xn−2), Sn−1(x1, . . . , xn−2, xn−1)

Sn(x1, x2, . . . , xn−1, xn)} ∪ {g x1...xn}
wherein:

� S1 = {g};
� for 2 ≤ j ≤ n − 2 and j = n, Sj (x1, x2, . . . , x j−1, x j ) is the set of all the

g
∏

k xk , where k, respectively, enumerates the j − 1-tuples one can build from
{1, . . . , j };

� but Sn−1(x1, x2, . . . , xn−2, xn−1) is the set of all the g
∏

k xk , where k, respectively,
enumerates the n − 2 tuples one can build from {1, . . . , n} (and not only from
{1, . . . , n − 1}, as above, hence, the extension).

5.2.2.5 Main Ideas of this Game. We now show how, based on the two val-
ues i0 and c0, the simulator is able to simulate the game many randomized
instances, generated by (multiplicative) random self-reduction, from GDH�

�,
such that the Test-ed key is (a known power of) the GDH secret value g x1...xn

relative to D. That is, all the elements of Sn (except the ones that correspond
to removed players) will have been embedded into the protocol during the c0th
operation, which leads to the Test-ed group.

The basic principle is that, whenever a Setup operation (for the Join and
Remove operations, the technique follows similarly) is initiated on a group I,
� uses line S1 for the first upflow (which is always the same), S2(x1, x2) for the
second one, etc. If the cardinality of I is greater than n− 1, subsequent players
instances will be simulated using exponents yi chosen by � itself, so that it can
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still compute the further session keys, from Sn−1(x1, x2, . . . , xn−2, xn−1) and the
known yi. While doing so, � maintains a list L (history) of involved players in
I, as well as the associations between the first n players in I and the indexes of
embedded exponent xi, and between additional players and known exponents
yi. Indeed, for all the known and unknown exponents, the simulation must
remain consistent, and always use the same exponent for an instance. More
precisely, for each group constructed, or under construction (when an operation
has been initiated), a sublist of triples is maintained: the triples are of the form
(i, j , x), where i is the index of the player (at most, one triple exists for each
player in a sublist) and j is the index of the embedded exponent x j or ⊥ if no
exponent is embedded. In the former case, x is the randomization of x j (see
below), and, in the latter case, x is the known exponent yi.

5.2.2.6 Random Self-Reducibility. In order to handle concurrent exe-
cutions of the protocol, � makes use of the (multiplicative) random self-
reducibility of the GDH problem: any new instance with index i in the list L uses
a new randomized exponent x ′

i = rixi. To that goal, � stores in list L, as many
sublists as there are existing groups; and, in each of these sublists, it stores up
to n of these random “blinding” exponents ri that keep trace of how the random
self-reducibility was applied to the input instance D = ViewEn(x1, x2, . . . , xn) to
get the new one D′ = ViewEn(r1x1, r2x2, . . . , rnxn), specific to the current group.
More precisely, each time (an instance of) a player is assumed to randomly pick
a private exponent, � proceeds as follows. If the player’s instance is associated
(through list L) to an unknown exponent xi, a random ri is chosen in Z�

q and
stored, meaning that random self-reducibility is to be applied to D by (formally)
replacing xi with rixi; if the player is not associated with any GDH exponent, a
random, fresh exponent yi is chosen in Z�

q and stored in L. Of course, when a
player instance is requested (by the protocol) to reuse a previous private expo-
nent, � does not pick anything, but uses L to perform adequate computation,
using the adequate elements from instance D.

Since � knows the authentication keys, and with the specific form of the ex-
tended trigon, � can easily simulate answers to all the queries: a new exponent
is either a new randomized exponent x ′

i = rixi for an unknown xi from D or a
chosen yi, the flows can be generated from the lines Si and the random values
r1, . . . , rn stored in L. Some subtleties have to be detailed.

5.2.2.7 First Difficulty. If � embeds all the elements of Sn into the protocol
execution, the first time the size of the multicast group is n � is not able to
compute the session key value sk needed to answer to the Reveal queries that
can occur before c0. More exactly, � would have then to use the value g x1···xn , but
we want to avoid this before c0, in order to reduce the security to distinguishing
this value from random.

5.2.2.8 Second Difficulty. � needs to know in advance which player in-
stance will send the last broadcast, in order not to embed the value g x1···xn

prematurely in the flows themselves; this value must be embedded in the Test-
ed session key only. Without caution, in particular if the i0th player is involved
in the group at some time but then leaves the group, we do not want that this
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temporary membership leads to embedding an exponent of instance D; this
player must be simulated using instance D at the c0th operation only. Other-
wise, there may be n unknown exponents x1 through xn embedded in the view
and the secret value may be exposed in one of the flows.

5.2.2.9 Third Difficulty. Assuming we manage to embed the GDH instance
D exactly on time, when the Test-query is asked, and not before. One difficulty
remains if we want to be able to perform the simulation. In effect, after having
received a challenge (the answer to the Test query), the adversary may continue
to initiate some operations before terminating; if we do not want to expose the
value g x1···xn during these future sessions, we need to be able to “go backward”
and to simulate the flows with less than n exponents again.

5.2.2.10 How to Overcome these Points. In light of the previously identified
difficulties, one can summarize the strategy of � as follows:

Embed the successive elements of instance D (after some random-
ization) in the protocol flows in the order wherein the players join the
group, until n − 1 players have been involved and, except for instances
of the i0th player; during the c0th operation (creation of the Test-ed
group), embed the last elements of instance D via the broadcast oper-
ated (hopefully) by the i0th player; after that operation, simulate the
flows using line Sn−1 only, with session keys in line Sn.

This last point, however, leads us to consider the extended trigon rather than
the basic one, simply because we cannot know in advance which (n − 1)-tuple
of exponents will be involved in future session simulations.

We now show that this strategy allows � to deal with situations where n
players are involved in the group before c0, and are added and removed re-
peatedly. To prevent all the exponents xi to be embedded prematurely, it is
sufficient to prevent one single player of using such exponents, by simulat-
ing this player with a private exponent yi that � chooses by itself. In order
to have all the exponents involved in the session key of the Test-ed group, it
is necessary to know who will be the last player to contribute (that is, which
player will broadcast the last downflow). Thus, the “guess” made on a player
index i0.

5.2.2.11 Detailed Steps of the Simulation. We give some more details on
what � is doing at each step: before c0, at c0, after c0. We will make intensive
use of two counters k and η, specific to each group: any operation Setup, Join,
or Remove initiates a new group, and then each group structure owns counters
k and η. In case of a Setup operation, the counters k and η are initialized to 0,
for the two other operations, the new group keeps the same values for k and η

as the previous group.
First, at any time, and for any operation different from the c0 + 1th:

� for any new player Ui (never involved since the last Setup), if the index
k < n − 1 and η 	= i0 − 1, � increments both k and i0, picks a randomizer
rk and, thus, uses x ′

k = rkxk as exponent for this player. The tuple (i, k, rk) is
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stored in L for this group. This tuple will never be removed, even when the
player leaves the group, but may be updated.
This way, the upflow or the broadcast flow involves a random self-reduction of
the kth line in the basic trigon: Sk(r1x1, . . . rkxk), where all elements are put
to power

∏
yi for all the (i, ⊥, yi) in L for this group. Similarly, the session

key is derived from one element from the k + 1th line (where k + 1 ≤ n).
� for any new player Ui (never involved since the last Setup), when the index

k is already equal to n − 1, or η = i0 − 1, � increments i0 and picks a random
exponent yi for this player. The tuple (i, ⊥, yk) is stored in L for this group.
This tuple will never be removed, even when the player leaves the group, but
may be updated.
This case is to ensure that we are not going to use (random self-reduced) line
Sn of the trigon prematurely.

� for a player Ui already involved since the last Setup, one can get (i, k, y) from
L. In the case k = ⊥, x ′

k = yk = y can be used again, unless a new random
has to be picked up. In such a case, � picks a new random exponent y ′

k and
thus uses x ′′

k = y ′
k as exponent for this player. The tuple (i, ⊥, y ′

k) is used for
updating L for this group.
Otherwise, x ′

k = rkxk can be reused, unless a new random has to be picked
up. In such a case, � picks a new randomizer r ′

k and thus uses x ′′
k = r ′

kxk as
exponent for this player. The tuple (i, k, r ′

k) is used for updating L for this
group.

When the c0th operation occurs, the last broadcast flow is operated by the
above i0th player, who now embeds some elements from the line Sn of the trigon;
this means, in particular, that this player is always associated with the last
exponent of instance D. It follows that the corresponding session key (which
is the Test-ed key) is the G-CDH� value g x1...xn relative to D, blinded by some
(known) random exponents: all the ri and the yi. � then answers the Test query
as in the real protocol, according to the value of bit b.

After c0, however, � also needs to be able to answer to all queries and, more
specifically the Reveal queries (adversary A may keep playing the game for
more rounds). More precisely, we want � to do so without using the secret GDH
value g x1···xn . To this aim, � has to unembed the elements of Sn from the protocol
(in order to reduce the number of exponents taken from the instance D) and it
does it in the operation that occurs at c0 + 1.

Technically speaking, this is feasible by having the initiator of the c0 + 1th
operation choose a fresh private exponent yi (and not simply blind his corre-
sponding exponent in the instance D with a fresh randomizer). However, de-
pending on which player8 performs that operation, � may not be able to do it
without going “out” of the basic trigon (but with only n−1 exponents involved).
This is the reason why the line Sn−1 has to contain all the possible (n−2)-tuples:
extension of the basic trigon.

8Note this is not obviously (an instance of) the i0th player, even if the latter did perform the previous

broadcast.
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Therefore, for any player Ui initiating the c0 + 1th operation, � decrements
k, picks a random exponent yi for this player. The tuple (i, ⊥, yk) is used to
update L for this group.

This way, the upflow or the broadcast flow involves a random self-reduction
of the n − 1th line in the extended trigon and the session key is derived from
one element from the nth line.

For all the subsequent operations (before a new Setup), k = n−1 and thus �

will use random private exponents for all the players, keeping all the xi, but one,
in the flows.9 Therefore, the future session keys will still be derived from the nth
line, but the broadcasts may involve any element in the extended n − 1th line.

5.2.3 A Comprehensive Example of Simulation. Here we provide a com-
plete example of how � can correctly handle a set of executions of the protocol,
according to the strategy described above. We represent the simulation by �

in the case n = 4 and according to the following “guesses”: c0 = 4, i0 = 2. The
instance D is {(), (g x1 , g x2 ), (g x1x2 , g x1x2 , g x2x3 ), (g x1x2x3 , g x1x2x4 , g x1x3x4 , g x2x3x4 )}.
Players’ private exponents which are fully simulated by � and we are denoted
yi, will be the randomizers, denoted by ri. We note that U2 (who performs the
broadcast in the crucial session) will be associated with unknown exponent x4

at that time only. Before that, U2 is associated to a fully-controlled exponent
y2. As a consequence, indexes are a bit tricky to follow, since U1 is associated
with x1, U3 with x2, and U4 with x3 (but y4 after the crucial query).

The adversary first builds a group with the following successive queries:
Setup{U1, U2, U3}, Send(U2, m1), Send(U3, m2), Send(U1, m3), Send(U2, m3).
To answer the first query, � simulates player U1, associating his values with
the first term g x1 in instance D; that is, � adds (1, 1, r1) to the first sublist; it
can thus construct the message m1, which is composed of the first flow and the
appropriate authentication data. The adversary then asks Send(U2, m1). The
simulator processes this query as follows: since the player being simulated is
Ui0 , but this Setup is not the c0th operation, U2 is simulated with a fully con-
trolled exponent: � chooses y2 by itself and adds (2, ⊥, y2) to the current sublist.
Finally, when the generated flow m2 is sent to U3 via the appropriate query, �

processes it by associating U3 with the second term of instance D (modulo some
known randomizer r3): the tuple (3, 2, r2) is added to the sublist. The computed

9Another solution would have been to guess which player performs the operation at c0 + 1. With

this second guess j0, the extension of the trigon would have contained all the n−2 tuples, but those

containing both i0 and j0.
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broadcast can thus be addressed to U1 and U2 (simulation is straightforward
there). The sublist for this execution is then: {(1, 1, r1), (2, ⊥, y2), (3, 2, r2)}.

To remove a player from the existing group, the adversary first asks a
Remove{U2} query. The simulator can easily simulates the group controller
to build a well-formed broadcast: indeed, � just refreshes the randomizer
for U3. The sublist for this group then becomes {(1, 1, r1), (2, ⊥, y2), (3, 2, r ′

2)}.
The broadcast is sent to U1 via a Send query, and that latter is easily pro-
cessed by � to compute the session key from g x1x2 and the data in L =
{(1, 1, r1), (2, ⊥, y2), (3, 2, r ′

2)}.

In this step, the adversary adds a new player to the group, with Join{U4}.
The simulator � will thus generate flows that will be sent successively from
U3 (the group controller) to U4 (the joining player) and, thereafter, broad-
cast by U4 (newly group controller) to all other members. The upflow is
computed by � using a refreshed randomizer r ′′

2 and the broadcast is con-
structed by associating U4 to the next term of instance D: thus a tuple
(4, 3, r3) will be added to the sublist. The sublist representing this execution
is L = {(1, 1, r1), (2, ⊥, y2), (3, 2, r ′′

2 ), (4, 3, r3)}. Here we can see the aforemen-
tioned first difficulty: if we had (in the Setup operation) associated U2 with a
term of the GDH instance, the session key here would have involved the secret
value g x1x2x3x4 , and � would have not be able to answer a possible Reveal query.

Note that c = c0 = 4. Here U2 rejoins the group. Before this step, it was not
associated with one exponent xi from D, to prevent premature exposure of the
GDH secret. However, this time, the simulator has to inject the last exponent:
player U2 will thus be associated with the last exponent x4 and the current
sublist will contain a tuple (2, 4, r4). Note that knowing the value of y2, the
simulator was able to remove it when injecting x4 instead. The scenario illus-
trates the aforementioned second difficulty: why � needs to guess which player
will perform the crucial broadcast. In effect the upflow sent by U4 (current
group controller) to U2 (joining member) must not contain the last exponent x4,
otherwise the secret GDH value is exposed. Thus Ui0 is the only player that can
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be associated with x4 in the Test-ed session. Consequently, his identity must
have been guessed before, in order to perform a special treatment in earlier
sessions. The current sublist here is {(1, 1, r1), (2, 4, r4), (3, 2, r ′′

2 ), (4, 3, r ′
3)}.

This scenario explains the third difficulty: why the instance D must follow
the “extended trigon” distribution. Because the c0 + 1th operation removes U2

from the group (thus making him inactive), � cannot update in the sublist the
tuple (2, 4, r4), which is relative to U2; the only exponent that can be refreshed
is that of the group controller U4 when sending the broadcast. This means that
� will dissociate U4 from the unknown (randomized) exponent x3 and use a
fully controlled exponent y4 instead. As a consequence, a term derived from
g x1x4 appears in the broadcast and that is why � needs the extended trigon as
his auxiliary input (remember that no such term appears in the basic trigon).
The sublist used by � is {(1, 1, r1), (2, 4, r4), (3, 2, r ′′

2 ), (4, ⊥, y4)}.

This last operation is mainly for completeness. From now on, the simulator
will never use exponent x3 again: only terms derived from x1, x2, and x4 will be
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used (with session keys derived from the (known) value g x1x2x4 ). Therefore, when
simulating the answers to the queries for U2, � simply refreshes the randomizer
r4; the corresponding sublist is {(1, 1, r1), (2, 4, r ′

4), (3, 2, r ′′
2 ), (4, ⊥, y ′

4)}.
The simulation is therefore indistinguishable from the game G2:

Pr[Guess2] = Pr[Guess3] (5)

5.2.3.1 Game G4. Game G4 is the same as game G3 except that the sim-

ulator is now given as an auxiliary input an instance D of size n from GDH$
�,

where � is the extended trigon En:

D = View$
En

(x1, x2, . . . , xn, r)

= {S1, S2(x1, x2), . . . , Sn−2(x1, . . . , xn−2), Sn−1(x1, . . . , xn−2, xn−1),

Sn(x1, x2, . . . , xn−1, xn)} ∪ {gr}
Therefore, in case b = 1, it uses the value gr to answer the Test query. Note
this value is used only to answer the Test query and is never used elsewhere
in the simulation described above. In such game, the Reveal queries can be
answered exactly the same way as in the previous game. Straightforwardly,
distinguishing between games G3 and G4 is, at most, as hard as solving the
G-DDH� problem:

| Pr[Guess3] − Pr[Guess4]| ≤ Adv
gddh�

G
(T ′) (6)

The running time of simulator in games G3 and G4 is essentially the same
as in the first game, except that each query may imply computation of up to
n exponentiation needed for the multiplicative random self-reducibility: T ′ ≤
T + nQTexp(k), where Texp(k) is the time needed to perform an exponentiation
modulo a k-bit number.

5.2.3.2 Game G5. Game G5 is the same as G4, except that the Test query
is answered with a completely random value, independently of b. It is then
straightforward that Pr[Guess5] = 1/2. Let δ be the distance between the out-
put of KDF(·) and the uniform distribution. Thus, we have:

| Pr[Guess5] − Pr[Guess4]| ≤ δ (7)

5.2.4 Conclusion. Putting all together Eqs. (2), (3), (4), (5), (6), and (7), we
get

Pr[Guess0] = Pr[Guess0 ∧ Forge] + Pr[Guess0 ∧ ¬ Forge]

≤ Pr[Forge] + Pr[Guess1]

≤ Pr[Forge] + nQ
(

Pr[Guess2] − 1

2

)
+ 1

2

≤ Pr[Forge] + nQ
(

Pr[Guess5] + Adv
gddh�

G
(T ) + δ − 1

2

)
+ 1

2

≤ Pr[Forge] + nQ
(

Adv
gddh�

G
(T ) + δ

)
+ 1

2

The theorem then follows from lemma 5.
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Remark. Recall that this proof is considering an adversary that is restricted
not to ask Corruptkem queries. When dealing with strong corruption, we have to
answer to all the Corruptkem queries made by the adversary along the games,
but we can only do so if we know the private exponents involved in the games—
these exponents must be given to A on Corruption queries. To reach this aim,
we can no longer benefit from the random self-random reducibility property of
G-DDH and have to “guess” the moments at which the adversary will initiate
the operations leading to the Test-ed group. Unfortunately, reductions carried
out in such a way add an exponential factor in the size of the multicast group:
indeed, for each of the n players, we will have to guess (among up to Q messages
sent) the flow that will be involved to build the Test-ed key; the loss in the
probability is thus O(Qn).

6. CONCLUSION

In this paper, we have provided a formal model and security definitions, as well
as methods, for authenticated group Diffie–Hellman key exchange. Our work
should allow cryptographic experts to properly analyze the security of a group
key-exchange protocol, to address, in a rigorous way, the security requirements
a given method aims to achieve, and to devise, provably secure protocols. The
proposed model is sufficiently generic to be adapted to many cryptographic
scenarios well-suited for key exchange in a group.

In addition, we have performed a security analysis using a protocol suite
already proposed for dynamic group Diffie–Hellman key exchange; we have
enhanced it with authentication services, proposed a modular implementation
that can be used to abstract out the use of cryptographic devices, and exhibited
a formal security proof under standard computational assumptions.

This paper, we hope, will enable security architects to choose a method based
not only on its efficiency but also on its (provable) security.

APPENDIX

PROOFS OF THEOREMS 1 AND 2

A.1 Preliminaries

Remind the GDH-distribution associated to a structure � made of proper subsets
of In = {1, . . . , n}:

GDH� = {D�(x1, . . . , xn) | x1, . . . , xn ∈R Zq},
where D�(x1, . . . , xn) =

{(
J, g

∏
j∈J x j

)
J ∈ �

}
The γ function denotes the cardinality of any structure �:

� for Tn, we have τn = γ (Tn) = ∑n
i=1 i = n(n + 1)/2, since the ith “line” of this

structure has exactly i elements.
� the cardinality of En is εn = γ (En) = γ (Tn) + (n−2

n

) − n + 1 = n2 − n + 1, since

the extension of the n − 1th line of this structure has exactly
(n−2

n

) − (n − 1)
elements.
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� it is also worthwhile to mention that the cardinality of the Generalized one
is 2n − 2.

The later is exponential in n, while the two others are quadratic.

A.1.1 Good Structure Families. Our goal is to prove that the hardness of
the G-DDH� problem can be reduced to that of the DDH one. Given an in-
dexed family � = {�n}, we proceed by induction over n: we prove that solving
the G-DDH�n problem reduces to solving the G-DDH�n−1

problem. The intu-
itive (and simple) idea is to replace, in an instance of �n, all occurrences of x1x2

by an independent variable x12, so that the number of variables decreases by
one, while the computational distance increases by, at most, Advddh. However,
remapping the new variable x12 to a variable in �n−1 assumes that the subsets
defining the � family are well suited for that. To do so, we examine the remap-
ping of modified subsets in �n into subsets of �n−1. For any indexed structure
� = {�n}n, we consider an auxiliary structure �̂ = {�̂n}n, where �̂n is built from
the set {0, 3, . . . , n + 1} in the same way �n is built from the set In through the
map 1 → 0, 2 → 3, . . . , n → n + 1.

Definition 2 (Good Structure Family). A family � = {�n}n is good if for any
integer n greater than 3 the following four conditions are satisfied:

1. ∀J ∈ �n, {1, 2} ⊆ J ⇒ J12 ∪ {0} ∈ �̂n−1

2. ∀J ∈ �n, 1 /∈ J, 2 ∈ J ⇒ J2 ∈ �̂n−1

3. ∀J ∈ �n, 1 ∈ J, 2 /∈ J ⇒ J1 ∈ �̂n−1

4. ∀J ∈ �n, 1 /∈ J, 2 /∈ J ⇒ J ∈ �̂n−1

where for any J, we denote by J1, J2, and J12 the sets J\{1}, J\{2}, and J\{1, 2},
respectively.

In other words, this means that

�n ⊆ {J0 ∪ {1, 2} | J ∈ �̂n−1, 0 ∈ J}
⋃

{J ∪ {2}, J ∪ {1}, J | J ∈ �̂n−1, 0 	∈ J}
where for any J , we denote by J0 the set J\{0}.

NOTE 2. The basic trigon T = {Tn} and extended trigon E = {En} are good
structure families.

NOTE 3. In [Naor and Reingold 1997] it is proved that the generalized (de-
cisional) Diffie–Hellman problem is polynomially equivalent to DDH. While it
is straightforward that the generalized structure is a good one, we mention that
our generic technique described in this section could not be used to establish
such reduction for the generalized structure, because of the exponential size of
that latter.

A.1.2 Group Random Distributions. For proving our result, we need to
alter group Diffie–Hellman tuples, introducing some randomness. This leads to
the group random (GR) distributions in which some elements are independently
random in the group Diffie–Hellman distributions.
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First we split the tuples in two parts:

D�n(x1, . . . , xn) =
{(

J, g
∏

j∈J x j

)
J ∈ �n, {1, 2} � J

}
⋃ {(

J, g
∏

j∈J x j

)
J ∈ �n, {1, 2} ⊆ J

}
=

{(
J, g

∏
j∈J x j

)
{1, 2} � J

}
⋃ {(

J, g x1x2

∏
j∈J12

x j
)

{1, 2} ⊆ J
}

We can now define an additional distribution:

GR�n = {V�n(x1, . . . , xn, α) | x1, . . . , xn, α ∈R Zq}
where (recall that J12 is the set J\{1, 2})

V�n(x1, . . . , xn, α) =
{(

J, g
∏

j∈J x j

)
J ∈ �n, {1, 2} � J

}
⋃ {(

J, gα
∏

j∈J12
x j

)
J ∈ �n, {1, 2} ⊆ J

}
Similarly to what is done for the group Diffie–Hellman distributions, we

define the two tuplesV�
�n

(x1, . . . , xn, α) andV$
�n

(x1, . . . , xn, α, r), the extensions of
V�n(x1, . . . , xn, α), where one appends {(In, gαx3···xn)} and {(In, gr )}, respectively.
Then,

GR�
�n

= {
V�

�n
(x1, . . . , xn, α)

∣∣ x1, . . . , xn, α ∈R Zq
}

GR$
�n

=
{
V$

�n
(x1, . . . , xn, α, r)

∣∣ x1, . . . , xn, α, r ∈R Zq

}
NOTE 4. We notice that under the constraint α = x1x2, for any

x1, . . . , xn, r ∈R Zq, one would have,

V�n(x1, . . . , xn, α) = D�n(x1, . . . , xn)

V�
�n

(x1, . . . , xn, α) = D�
�n

(x1, . . . , xn)

V$
�n

(x1, . . . , xn, α, r) = D$
�n

(x1, . . . , xn, r)

and thus,

GR�n ≡ GDH�n GR�
�n

≡ GDH�
�n

GR$
�n

≡ GDH$
�n

Definition 3 (Group Random Adversaries). A group computational
random- or (t, ε)- GCR�n-attacker in G is a probabilistic Turing machine
� running in time t such that

Succ
gcr�n
G

(�) = Pr
xi ,α

[
�(V�n(x1, . . . , xn, α)) = gαx3···xn

] ≥ ε

A group-decisional-random- or (t, ε)- GDR�n-distinguisher in G is a probabilistic
Turing machine � running in time t, such that its advantage Adv

gdr�n
G

(�) defined
by ∣∣∣∣ Pr

xi ,α

[
�

(
V�

�n
(x1, . . . , xn, α)

) = 1
]

− Pr
xi ,α,r

[
�

(
V$

�n
(x1, . . . , xn, α, r)

) = 1
]∣∣∣∣

is greater than ε.
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A.2 Proof of Theorem 1

Now we provide a reduction of the decisional Diffie–Hellman (DDH) problem to
the group decisional Diffie–Hellman (GDDH) problem, but for the good struc-
ture families only. We first (re)state the theorem more formally.

THEOREM 1. Let G be a cyclic multiplicative group of prime order q and tG, the
time needed for an exponentiation in G. For any good structure family � = {�n}n

of cardinality γ = {γn}n and any integer n, we have:

Adv
gddh�n
G

(t) ≤ (2n − 3) Advddh
G

(t ′)
where

t ′ ≤ t + tG
n∑

i=3

γi

The proof results, by induction, from the following two lemmas 6 and 7 which
lead to

Adv
gddh�n
G

(t) ≤ Adv
gddh�n−1

G
(t + γntG) + 2 Advddh

G
(t + γntG)

However, before proving it, we plug in some numerical values for the time of
computation:

� for the structure of basic trigon Tn, the time t ′ is less than t + n3tG/3;
� for the structure of extended trigon En, the time t ′ is less than t + 2n3tG/3.

LEMMA 6 (RELATING GDDH AND GDR). For any integer n and any structure
�n, we have

Adv
gddh�n
G

(t) ≤ Adv
gdr�n
G

(t) + 2 Advddh
G

(t + γntG)

PROOF. We consider an adversary A against the G-DDH�n problem. Such
an adversary, on input, a distribution depending on a bit b, replies with a bit b′,
which is a guess for b. We assume that A runs in maximal time t, in particular,
it always terminates, even if the input comes from neither GDH�

�n
nor from

GDH$
�n

. We then define the following two games: G0, G1, and consider the
event Si in game Gi as b = b′.

A.2.1 Game G0. In this game, we are given a Diffie–Hellman triple
(A, B, C) = (g x1 , g x2 , g x1x2 ). We then choose at random (x3, . . . , xn) in Z∗

q and
compute (within time O(γntG)) a tuple Un, which follows the distribution GDH�n ,
as follows

Un =
{(

J, g
∏

j∈J x j

)
J ∈ �n, 1 /∈ J, 2 /∈ J

}
⋃ {(

J, A
∏

j∈J1
x j

)
J ∈ �n, 1 ∈ J, 2 /∈ J

}
⋃ {(

J, B
∏

j∈J2
x j

)
J ∈ �n, 1 /∈ J, 2 ∈ J

}
⋃ {(

J, C
∏

j∈J12
x j

)
J ∈ �n, {1, 2} ⊆ J

}
Then, if b = 1, one appends to Un the value Cx3···xn ; and if b = 0, one appends
to Un a value gr , where r is a random exponent: the computed tuple follows
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exactly the distribution GDH�
�n

(resp. GDH$
�n

) if b = 1 (resp. b = 0). Thus, by
definition, if we feed the attacker A with this tuple, we have

Pr[S0] = Adv
gddh�n
G

(A) + 1

2

A.2.2 Game G1. It is the same as game G0 except that we are given a
tuple (A, B, C) = (g x1 , g x2 , gα), where α is a random exponent. It is easy to
see that the tuple given to the attacker A follows the distribution GR�

�n
(resp.

GR$
�n

), if b = 1 (resp. b = 0). Then,

Pr[S1] = Adv
gdr�n
G

(A) + 1

2
≤ Adv

gdr�n
G

(t) + 1

2

The difference in the probability distributions in the two games is also upper-
bounded by:

Pr[S0] ≤ Pr[S1] + Advddh
G

(t + γntG)

The lemma follows.

LEMMA 7 (INDUCTION STEP). For any good structure family � = {�n} and any
integer n, we have

Adv
gdr�n
G

(t) ≤ Adv
gddh�n−1

G
(t + γntG)

PROOF. We consider a GDR�n-distinguisher A running in time t and we use
it to build a G-DDH�n−1

distinguisher. To reach that goal, we receive as input a
tuple drawn from either GDH�

�n−1
or GDH$

�n−1
. We use A to guess the underlying

bit b. In the given tuple, we denote by (In−1, un−1) the last value and by Un−1

the first values of this input tuple:

Un−1 =
{(

J, g
∏

j∈J x j

)
J ∈ �n−1

}
= D�n−1

(x1, . . . , xn−1) ∈ GDH�n−1

un−1 = g x1...xn−1 if b = 1, or gr if b = 0

First, we split the tuple Un−1 in two blocks, depending whether 1 ∈ J :

Un−1 =
{(

J, g x1

∏
j∈J1

x j
)

J ∈ �n−1, 1 ∈ J
} ⋃ {(

J, g
∏

j∈J x j

)
J ∈ �n−1, 1 /∈ J

}
We then write this tuple by renaming the variables x1, . . . , xn−1 to be, respec-
tively, X 0, X 3, . . . , X n. It then follows that the elements of Un−1 are indexed by
the elements of �̂n−1 rather than �n−1:{(

J, g X 0

∏
j∈J0

X j
)

J ∈ �̂n−1, 0 ∈ J
} ⋃ {(

J, g
∏

j∈J X j

)
J ∈ �̂n−1, 0 /∈ J

}
Now we randomly pick two values X 1, X 2 in Z∗

q and use them to construct the
following tuple, in which the last block in the above equation is used to derive
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the last three blocks of Wn−1:

Wn−1 =
{(

J, g X 0

∏
j∈J0

X j
)

J ∈ �̂n−1, 0 ∈ J
}

⋃ {(
J, g X 2

∏
j∈J X j

)
J ∈ �̂n−1, 0 /∈ J

}
⋃ {(

J, g X 1

∏
j∈J X j

)
J ∈ �̂n−1, 0 /∈ J

}
⋃ {(

J, g
∏

j∈J X j

)
J ∈ �̂n−1, 0 /∈ J

}
Remember that � is a “good” structure family:

�n ⊆ {J0 ∪ {1, 2} | J ∈ �̂n−1, 0 ∈ J}
⋃

{J ∪ {2}, J ∪ {1}, J |, J ∈ �̂n−1, 0 	∈ J}
It follows that one can build the following tuple Vn, which is also included in
Wn−1:

Vn =
{(

J, g X 0

∏
j∈J12

X j
)

J ∈ �n, {1, 2} ⊆ J
}

⋃ {(
J, g

∏
j∈J X j

)
J ∈ �n, {1, 2} � J

}
We note that

Vn = V�n(X 1, . . . , X n, X 0) ∈ GR�n

Vn is then appended (In, un−1) and given to A. The latter returns a bit b′ that we
relay back as an answer to the original G-DDH�n−1

problem. The computation
time needed to properly generate Vn from the input Un−1 is, at most, γntG.

Thus, we have

Adv
gddh�n−1

G
(t + γntG) ≥ Adv

gdr�n
G

(t)

The lemma follows.

Putting all together, we obtain:

Adv
gddh�n
G

(t) ≤ Adv
gdr�n
G

(t) + 2 Advddh
G

(t + γntG)

≤ Adv
gddh�n−1

G
(t + γntG) + 2 Advddh

G
(t + γntG)

≤ Advddh
G

(
t +

n∑
i=3

γitG

)
+ 2

n∑
i=3

Advddh
G

(
t +

n∑
j=i

γ j tG

)

≤ (2n − 3) Advddh
G

(t ′) where t ′ ≤ t + tG
n∑

i=3

γi

A.3 Proof of Theorem 2

Now we show the GCDH is a standard assumption by relating it to both the
CDH and the DDH.

THEOREM 2. Let G be a cyclic multiplicative group of prime order q and tG the
time needed for an exponentiation in G. For any good structure family � = {�n}n

ACM Transactions on Information and System Security, Vol. 10, No. 3, Article 10, Publication date: July 2007.



40 • E. Bresson et al.

of cardinality γ = {γn}n and any integer n, we have:

Succ
gcdh�n
G

(t) ≤ Succcdh
G

(t ′) + (n − 2) Advddh
G

(t ′) where t ′ ≤ t +
n∑

i=3

γitG

As for the previous theorem, the result comes, by induction, from both

Succ
gcdh�n
G

(t) ≤ Succ
gcr�n
G

(t) + Advddh
G

(t + γntG)

Succ
gcr�n
G

(t) ≤ Succ
gcdh�n−1

G
(t + γntG)

We consider an adversary A against the G-CDH�n problem. Such an adver-
sary, on input, a tuple drawn from the GDH�n distribution, replies with a single
value, which is a guess for the corresponding secret. We assume that A runs in
maximal time t, in particular, it always terminates, even if the input does not
come from GDH�n .

We then define a sequence of games G0, G1, . . . . In each game, given a triple
(A, B, C) and n−2 random elements (x3, . . . , xn) in Z∗

q (which are not necessarily
known), we consider Si as the event that the adversary A outputs Cx3···xn .

A.3.1 Game G0. In this game, we are given a Diffie–Hellman triple
(A, B, C) = (g x1 , g x2 , g x1x2 ). Then, by randomly choosing (x3, . . . , xn), we can
compute:

Un =
{(

J, g
∏

j∈J x j

)
J ∈ �n, 1 /∈ J, 2 /∈ J

}
⋃ {(

J, A
∏

j∈J1
x j

)
J ∈ �n, 1 ∈ J, 2 /∈ J

}
⋃ {(

J, B
∏

j∈J2
x j

)
J ∈ �n, 1 /∈ J, 2 ∈ J

}
⋃ {(

J, C
∏

j∈J12
x j

)
J ∈ �n, {1, 2} ⊆ J

}
It is easy to see that Un = D�n(x1, . . . , xn), and thus follows exactly the distri-
bution GDH�n . The tuple Un is then provided to the adversary. By definition,
since Cx3···xn = g x1···xn , we have

Pr[S0] = Succ
gcdh�n
G

(A)

A.3.2 Game G1. It is the same as game G0 except that we are given a
tuple (A, B, C) = (g x1 , g x2 , gα), where α is a random element in Z∗

q . We then
perform the same operations as in game G0 to obtain a tuple which follows
the distribution GR�n : Un = V�n(x1, . . . , xn, α). This tuple is provided to the
adversary, which computes gαx3...xn . By definition, we have:

Pr[S1] = Succ
gcr�n
G

(A) ≤ Succ
gcr�n
G

(t)

In both games the computation time needed for generating the tuple from the
input a triple (A, B, C) is, at most, (γn − 1)tG, where tG is the time required for
an exponentiation in G. Another exponentiation is needed to compute Cx3···xn .
Clearly, the computational distance between the games is upper bounded by
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Advddh
G

(t + γntG), then:

Succ
gcdh�n
G

(A) ≤ Succ
gcr�n
G

(t) + Advddh
G

(t + γntG)

A.3.3 Game G2. It is the same as game G1, except that we choose x1

and x2 by ourselves. Therefore, (A, B, C) = (g x1 , g x2 , gα), where x1 and x2 are
known, but α is not. The remaining of this game is distributed exactly as in the
previous one, so Pr[S2] = Pr[S1].

A.3.4 Game G3. It is the same as game G2 except that we do not know the
elements (x3, . . . , xn). Instead, we are given an instance Un−1 of the G-CDH�n−1

problem, built from the (unknown) exponents (α, x3, . . . , xn), where α is the same
than the underlying (hidden) exponent in C. By operating as in the previous
section, granted the property of good structure family, we can complete the
given tuple by using x1 and x2 (which are known) to obtain a tuple Vn following
the distribution GR�n .

The variables are distributed exactly as in the previous game, so we have
Pr[S3] = Pr[S2]. Note that since we do not know x3, . . . , xn, we are no longer
able to decide whether the value the adversary outputs is Cx3···xn . However, it is
not a problem since the two games are perfectly identical.

Anyway, since Cx3···xn = gαx3···xn is the Diffie–Hellman secret associated to
the given G-CDH�n−1

instance, the adversary outputs Cx3···xn with probability

at most Succ
gcdh�n−1

G
(t + γntG):

Pr[S3] ≤ Succ
gcdh�n−1

G
(t + γntG)

Putting all these together gives us

Pr[S0] = Succ
gcdh�n
G

(A) ≤ Pr[S1] + Advddh
G

(t + γntG)

≤ Pr[S3] + Advddh
G

(t + γntG) ≤ Succ
gcdh�n−1

G
(t + γntG) + Advddh

G
(t + γntG)

Since it is true for any adversary running within time t,

Succ
gcdh�n
G

(t) ≤ Succ
gcdh�n−1

G
(t + γntG) + Advddh

G
(t + γntG)

By induction, it follows:

Succ
gcdh�n
G

(t) ≤ Succ
gcdh�n−1

G
(t + γntG) + Advddh

G
(t + γntG)

≤ Succ
gcdh�n−2

G
(t + (γn + γn−1)tG)

+ Advddh
G

(t + (γn + γn−1)tG) + Advddh
G

(t + γntG)

≤ . . .

≤ Succcdh
G

(
t +

n∑
i=3

γitG

)
+

n∑
i=3

Advddh
G

(
t +

n∑
j=i

γ j tG

)

≤ Succcdh
G

(t ′) + (n − 2) Advddh
G

(t ′) where t ′ ≤ t +
n∑

i=3

γitG
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